Project Details / 项目资讯
- GitHub URL / GitHub 链接: Low-Light-Image-Enhancement-CLAHE-Based
Description / 描述
The low light image enhancement algorithm works by first converting the input image to HSV color space, after which the CLAHE is performed on the V space, and different morphological operations performed on the adjusted V space, followed by image fusion of the different outputs from the morphological operations and converting the color space back to RGB space to obtain the enhanced output image. The four images shown here are the two different original images and their enhanced versions respectively, followed by a demonstration of the algorithm on a YouTube video.
低光照图像增强算法首先将输入图像转换为 HSV 颜色空间,然后在 V 空间上执行 CLAHE,并对调整后的 V 空间执行不同的形态学操作。 不同形态学操作的输出最终被融合为一体,并且把颜色空间转换回 RGB 空间以获得亮度增强的图像。 这里展示的四幅图像分别是两个不同的原始图像及其亮度增强版本,随后在 YouTube 视频上展示了该算法。
Reference
[1] Pavan, A. C., Lakshmi, S., & MT, S. (2023). An Improved Method for Reconstruction and Enhancing Dark Images based on CLAHE. International Research Journal on Advanced Science Hub, 5(02).
[2] Wang, W., Chen, Z., Yuan, X., & Wu, X. (2019). Adaptive image enhancement method for correcting low-illumination images. Information Sciences, 496, 25-41.